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A REVIEW OF NARROWBAND AMBIGUITY FUNCTIONS

INTRODUCTION

The narrowband ambiguity function was introduced by Woodward (1) in 1953. Its
properties have been extensively explored and used to study range and velocity resolu-
tion of radar and sonar targets by Woodward (1) and others (2-41). The wideband am-
biguity function is of more recent origin and has not yet been as fully developed. Refer-
ences to both functions are scattered through the literature, in widely varying notations.
This report reviews the derivations and properties of the narrowband function and some
of its generalizations, using a consistent notation. A companion report ("A Review of
Wideband Ambiguity Functions,") is concerned with the wideband function and the rela-
tionship between the two functions.

These reports originated as a set of notes for a Branch Seminar and have been re-
vised for more widespread distribution. The intent was to elaborate on and explain
Woodward's (1) Chapter 7 and then to discuss some of the subsequent work. To facilitate
reference to Woodward, the initial sections follow his work closely. Notational changes
were necessary for consistency in the sequel. Details of some of the developments have
been relegated to the appendices.

RESOLUTION AND AMBIGUITY

Range Ambiguity

Let a signal transmitted at time t be represented by the real part of the analytict
signal q](t). We consider first the problem of range resolution of point targets, where
range is determined by the known velocity of propagation and the measured delay in the
signal echo. We assume no attenuation. To achieve maximum resolution, we would like
the echo W( t - 7) to differ as much as possible from 'P( t). Using a mean-square cri-
terion, we would like?

fJ' (t) - W(t- 7)12 dt (1)

to be as large as possible, except, of course, near r = 0. That is, we wish to maximize

f[WT(t) 'P(t-r)J] [q*(t) - Y*(t. 7-)] dt

= f|Y4(t)t2 dt + f f4(t - ) 12 dt - [T(t) 41*(t - It - f T(t -r) W*(t) dt

= 2E - 2RE EfrT ( t) Tc( t - T) dt]

where 14'(t) 12 dt = I ff ( t- r)_ 12 dt - E, the total energy of the analytic signal or twice
the total energy of the real signal. Equivalently, we wish to minimize

-tA complex signal is said to be analytic if its imaginary part is the Hilbert transform of its real
part: /m [I F ( t)) = II Re FT ( t ) },

tHere and in the sequel integration is over the entire space of the appropriate dimension, ±W for
all single integrals, unless otherwise stated.
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D. A, SWICK

R-' tf ( t T) *- t - -r) dt] (2)

except near r = O. Let 1( t) u( t ) exp (it) (3)

Then

T*( t - r) - rrt- r) exp [- - r)]

and Eq. (2) becomes

R-~t [exp (iw) f u t t) u*( t - r) dtj (4)

which oscillates with i-

The requirement is that R (-r) b be as small as possible, where

R (r) - U ( t ) u*( t -r) dt (5)

is the complex autocorrelation function, and the symbol nmeans "is equal by definition
to." Sincet

Er I"( --T)I f Liu(t-T) exp(-2niTft) dt = exp(-2nifr)U(t)

Parseval's theorem gives us from Eq. (5)

R r) = fIU( f 2 exp (2nirrf) df =p[ jU(f)} ') (-

Furthermore, R(o) = fu( lt)[ df = f[U(f)jct df = E.

As a measure of total signal ambiguity, Woodward (1) defines the time-resolution
constant

ARR('r)V" 4r =±ftU(f)I4 cdt (7)
E2 1 te(T)1 dT =E2 I

where the last equality again uses Parseval's theorem.

Ambiguity in Range and Velocity

It the effect of moving targets is assumed to be adequately approximated by a simple
shift in frequency, we can define in an analogous fashion in terms of the frequency shift a
"frequency autocorrelation function"

v(>tfUff)U-(f I,) df W4

=Mu(t)12 eXP(-27i4t) ct =Wp [tut)12(

-tin general, tY f (x)j = gy) symbolizes the Fourier transform g(y) =f (x) exp (-2wtxy) ax.
The inverse transform willbe symbolizedby ,F- [g (Y }] = E(x) J (y) exp (2iXy> dy,

2
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since Yff7' [U( f- 4)] = exp (277i t) u(t).

Without loss of generality we can let E = 1, and by analogy with Eq. (7) define the
frequency resolution constant

F A lfKQlI2 do= flu(t)1 4 dt (10)

where the second form comes from Eq. (9), using Parseval's theorem.

If the targets are at different ranges and are moving with different radial velocities,
we need a combined time and frequency correlation function (two-dimensional correla-
tion function). For the time being we consider only the narrowband approximation:

The Doppler effect is approximated by a frequency shift (P, constant across the signal
bandwidth.

The echo of T(t) is thus given by W(t - r) exp [27niC( t - -r)]. Again, we let 41(t)
u (t) exp (iwt) = n (t) exp (2rift). The function to be minimized is now, by analogy with
Eq. (2),

R't [exp (2riDr) fT(t) W*(t - r) exp (-2rit) dt]

- Rt{exp [2nii(f+ A) -r] fu(t) u*(t - T) exp (-27rit) dt].

We require the modulus of the combined time and frequency correlation function

y(7r, ) - fu(t) u*(t-r) exp(-2nriDt) dt (11)
to be as small as possible, except near ix (0,)I E 1.

The ambiguity function (Woodward ambiguity function, narrowband ambiguity func-
tion, n-b autoambiguity function) is defined as

A (r,$d) A I X ( 0)12 (12)

Other definitions of the generalized autocorrelation function (GACF) which lead to
the same ambiguity function appear in the literature. For example, let

(7-,D)= f u (t + r/2) u*( t - /2) exp (-2niDt) dt

* = f u(Iq) u*(Ti - 7) exp [-2vrA(,I -- r/2)) dv

= exp(,7iifr) X(-r, b)

so that

The present definition, Eq. (11), has some useful transformation properties which
will be discussed later.

The name of the ambiguity function stems from the fact that it does not uniquely de-
termine a waveform. For example, let the GACF of Eq. (11) be labled x',(T,%) to dis-
tinguish it fromy(Tr't) rv(t) v*(t - ) exp (- 2Tnilht) do, where V( t) v u(t). Ambiguity is
apparent if we consider the frequency-shifted and time-delayed waveform

3
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v ( t ) = u ( t -C)exp( 2nTia)

where 0 and 9 i 0. Then

IxK(-rOl[ =x,(r_,)I2 .

SOME PROPERTIES OF THE GENERALIZED AUTOCORRELATION
FUNCTION AND THE WOODWARDI AMBIGUITY FUNCTION

>((T,o) = fu(t)U*(t-T) dt -R)ry (13t

g(0, 4 )) f=I(tWK 2 exp(-27rA1t) COt () (FlY

x(0, 0) = I"u(t)W2 dt = E = I . (15>

Theorem 1

The GACF as an integral in the frequency domain is given as

X(T,41) = fU*(f)U(f+()exp(2rifr)f. (16)

The proof of theorems I through 4 will be found in Appendix A.

Theorem 2

The combined time-frequency resolution constant is given as

IfIfx(-r,() 2drdi= I . (1'?)

"The effective 'area of ambiguity' in the time-frequency domain is independent of the
transmitted waveform and is equal to unity." This theorem is called the "Radar Uncer-
tainty Principle" by Siebert (3). It is one of the most important properties of thenarrow-
band ambiguity function and will be discussed further after some examples have been
considered.

Theorem 3

1R,(,) • <x> 2 (00) = I - (18)

Theorem 4 (Siebert's theorem (4))

The ambiguity function is its own two-dimensional Fourier transform:

If f X (,) 2 exp [- 27Ti (fr-4t)3 drdl I= X(tf)r 2 . (19)

Theorem 2 can be obtained from Eq. (19) with t = f = 0.

4
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Symmetry

=f Iu(t) u*( t fr) exp ( 277iIt) dt = fu -7) U41v?) exp [2i'P(- - r)] dq

= exp (- 27Ti(Pr) X (t(T,)

CT -Y(T'1)1 2 (20)

Relationship to Matched Filter

Consider a filter matched to a real transmitted signal u ( t>; the impulse response
is h ( t) = u (T- t}. Let the input to this filter be the time-delayed and frequency-shifted
waveform

x( t) = u ( t + r) exp [- 2ridvi( t r)]

Then the output is y(t) = x(t) <h(t) = fx(a) h(t -) da

y(t) ft(a + r) exp [-2ni>(a + -)] u(T- t t o) d,

- f u(H3)u ( - -r + T -t) exp(-21 ) d

y(T) =(rrlP} .

Thus, the GACF is the output of a filter matched to the transmitted signal in re-
sponse to an echo with constant time delay and constant frequency shift (narrowband ap-
proximation to Doppler effect).

Convolution Theorems

Theorem 5

If two functions are convolved in the time (frequency) domain, their generalized
autocorrelation functions are convolved in the time (frequency) coordinate.

Proof of frequency convolution case

Let u(t) = v(t) w(t). Then U(f) = v(f) *vW(f)

X(r, q) = fU*(f)D(f +() exp(2-nifr) df

- fffV*(p)W"f j) V(v)W(fry-v)exp(2fifr) dydrdf

- III V*,() V (,.) W*(q7) 1W(v? + - v + l¢) exp (2nd (q7 + it) rJ dqdpdr'

= ff V*(P) V(r.I) YV (rp - v + (l ) exp (27nijpr) dcidj,

= fJIV(I) V(Pi-<)ecp(2nipr)y (+r' O -) ds d

- IY,(r,<)x Y(T,-I -<) d4

~ M ' F)- '' 
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where , indicates convolution with respect to 'F. The proof of the time convolution case
is similar. The operation of these two theorems is noncommutative (31).

Uniqueness Theorem

Theorem 6

The function Lt ( t) is uniquely determined to within a multiplicative constant of unit
magnitude almost everywhere (a.e.) by its generalized autocorrelation function.

Proof

fx,/r,4>) dT = ffu(t)u*(t-r)exp(-I2nit-) dtdr

= fu (t)exp(-2uitt) fus*() drTdt = UU*(O) -

Therefore, if xy(rq) =r,'), VX(s) V*(o) = u(tyLu*'o) and hence if V*(o) .
V(co) - cU(), where c = U*(O)/V*(0). Since two functions having the same Fourier
transform are equat a.e., we have v (t) = cu (t), a.e. and

- X,(,T'4) = Jcu ( t) &*u*(t - r) exp(-2nit) dt =c 2 xtrA) -

so that ez 1.

Complex Energy Density Function

Rihaczek (41) has recently defined a complex energy density function which may be
obtained as the Fourier transform of the GACV.

Consider a real signal represented by R4 [u (t 13, where v (t) is an analytic signal,
and let

f _u(t)1
2 It T 5 I U(f)K2 df = E

where E is twice the total energy of the real signal.

Then u ( t) 21 represents power, or "energy density waveform," and R U( £f1 2 is the
energy density spectrum. U the autocorrelation function of u (t) is given by Eq. (5), then
from Eq. (6), or by the Wiener-Kmintchine theorem, the spectral density is

W(f) = Yfr[R(T)3 ' - ('f)V (21)

Similarly, the autocorrelation function in the frequency domain, Eq. (8), transforms
into the "waveform density." From Eq. (9) we have

,%j z7¢) = t)12,

By analogy, the two-dimensional Fourier transform of the GACP is

6
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%fq~ ,f [X(r'r, D)2 - ff \ (7.<)) exp £-2iTi( fr- (Dt)] drd(d

fffu (q) *l(u7 - 7) exp (-27i(Oq) exp [- 27Ti( fr -(Pt)] dydfrdd

= u(t) S tf(t -r) exp(-2i7ifr}) dr

= u(t) exp(-27rift) f u*(& ) exp (277ifC) dC

=. u( t) U*( f) exp (-27Ti ft) . (23)

Thus, just as the autocorrelation functions in time and in frequency each are the,
Fourier transforms of an energy density function, as shown in Eq. (21) and Eq. (22), we
may define the complex energy density function in time and frequency from Eq. (23) as

E(t , f) - U ( t ) U*(f) exp (- 2ri ft) - (24)

Then the energy density spectrum is

e ( tf) dt = iU(f)1 2 ;

the energy density waveform is

f E(t, f) df= Iu(t)12

and

fI E(t,f) dtdf = E £

the total energy of the analytic signal.

The energy of the analytic signal within a "cell" of area TB
time-frequency plane is given by

t0 + T2 fo +B/ 2

ETB = f f
to-T/2 f-B '2

centered at (to, f0 ) in the

f ( t, f) dfdt -

EXAMPLES OF NARROWBAND AMBIGUITY FUNCTIONS

Single Gaussian Pulse

We consider first an example discussed by Woodward (1). Only slightly more general
than Woodward's simplest pulse is the single Gaussian pulse

u ( t) _ k exp (--at 2 ), a > 0 . (25)

where the parameter a determines the width of the pulse, and k = (2a.'/r) 1'4 so that

(Z, 2 ( t ) dt I .

7



DI A. SWICI

It is shown in Appendix B that

, (7 (D,) exp (- a r2/2 - w2qi2/ 8 a - r i-r)

Thus,

I 2 eXp-( exp -(ar2 + 7n2cq2/a)),

(26)

(27)

and contours of constant ambiguity are given by the ellipse ar 2 + T2&/a = constant, as
shown in Fig. I.

0i

SHORT PULSE tO> irT a1

- T _ > i _ r

LONG

Fig. I - Curves of constant ambiguity:

1x2 _ e- I

Note that

IRu_)E2 -iX(rl0)12 = exp (_,ar2)

and

-K~t¢)l = expd eN9 la)

so that in this case the ambiguity function is factorable: \j(r fl) 2 I R(")2 1 H I
This result is not general. When it holds we have from Eqs. (7), (10), and (17) that
TF = 1.

Single Rectangular Pulse

Let u( t) = (2a)-' '2, I t < a, zero elsewhere. In Woodwardt s (1) notation,
u(t) = (2a)-I' 2 rect (t,12a). Then

8
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X)jT,'F) = >tt[u(t) tu( t r)] zftt,p{(2a) rect [(2t - -r)/2 (2a - Ir )] I

I {1 Ir1/2a)] sinc [(2a- Ir ) F] exp(-7i(Dr) T1 •| 2a

lo. r > 2a (28)

and

2= (I - IT]/2a)2 sirc2 [(2a- 1T ) (D • 1 T1 ,C 2a (29)

zero elsewhere, where sine x T si[l "-TX 'eTX.

Modulated Uniform Pulse Train

To facilitate Woodward's next example, the Gaussian pulse train, we consider a train
of (Dirac) deltafunctions. Eschewing questions of rigor and using Woodward's notation,
we let

lkv(t) - 8 P(t-_nT) rept )

Then

W(f) = /cob.T 1 =
TTT

If the pulse repetition period T is unity, the train of delta functions Fourier trans-
forms into itself.

The GACF of a train of delta functions is shown in Appendix C to be

'ev(C7 ' ) - I L 8- (nT} (30)
This "bed of nails" (5, 22, 33) is shown in Fig. 2, drawn as if the delta functions had finite
amplitude.

Let a general pulse train be represented by

v(t) = repr u(t) - u(t) * E a(t -nT) = u(t) * w(t) . (31)

By Theorem 5 we have

X = X4(TA) X x0Cr,'F)

T 

T hEa (T )4,(05,$) 8 (r- nT- o) dc

9



D. A. SWICK

It

I - w r

Fig. 2 - "Bed of Nails" generalized
autoco rrelation function

If the pulse train of Eq. (31) is, in turn, modulated by an envelope function x (t, the
resulting waveform and its spectrum may be represented by

y(t) = x(t)v(t) and Y(t) = X(f)V V(F) -

Using Theorem 5 and Eq. (32) it follows that

F~l3= yXC(rQ3fF xv(rt)

T f I x(T-v)xU(TT 1'V)d('FT-v) dv

T T) T

Thus, the ambiguity function is

- " yr e)- 4- I -r77I T ( --1X7T - -t- T )'
k~~~~ ,nLk 

We now impose the additional conditions that the GACF of a single pulse vanishes
for Ti > T and that the GACF of the envelope function vanishes for [Vj / Ti. With
these conditions we can write

XU(T -tTJP) X(T--nT$) =T I%(fI' _T-','T 2 t (33)

and

xu ( 5l -- + ) (ru - QT) xv | ( T - )T 

where &,,, is the Kronecker delta. Hence,

10
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Y ) = ± z ! (I1 I-m\ lX (T- )12 ( 34)
For arectangular pulse, u(t) = (2a)- 2 rect (t/2a), with a rectangular envelope,

x ( t) = (2b)- 1' 2 rect (t/2b), Eq. (28) shows that the conditions Eq. (33) are approximately
satisfied if 2a < T -C 2b. We then have

(1- ItI|/2b )2 -| - nT /2a)2

X sinc 2 E(2a - Ir--TI ) m/Tj sinC2 [(2b - lTI)Q- m/T)]}

Gaussian Pulse Train

If u( t) is a single short Gaussian pulse, we have from Eq. (26)

y,(r-nT,$)x*(r-mT,'F) -v exp {I- [(LrnT2 + (-r-mT)21 -a 2 -- -aiJ7(m-n)T}

- (_l)(n-m)niT exp {+ -nT) 2 + (Tr -mT)21 -_ 7D2}

If n - m, this equation reduces to 1)Q,(r - nT,$)1 2 in agreement with the conditions
in Eq. (33). However, for a. a, the product does not exactly vanish; there is some
overlap of the Gaussian tails. We will have a close approximation if

exp {- [(r - nT)2 + (T - mT)21} << I Y V a -, Yr -

This requirement is satisfied if aT2 >> 0, as must be the case for a short Gaussian
pulse - moderate T requires large a.

Similarly, if x (t) is a broad Gaussian envelope, x ( t) - k' exp (-bt 2 ), we have again
from Eq. (26) with b replacing a:

tjriT-L) Z( ruL)= exP{..hT2 - [(' --) 2 +2 ] (rn-a) 4

v ( -i) (n-m)T'T ffcfxp { hr '' 2 [(7 I 2T) + T) ] -

If in = a, this reduces to

If m - n, we require 1ibT2 >> O. Thus, for T moderate, we must have b very small,
consistent with the broad Gaussian envelope.

Thus, if b <c T << a, the ambiguity function for a train of narrow Gaussian pulses
with a broad envelope, obtained from Eqs. (34) and (27), is

M

11
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2 1 2 2 2
EXY ( 7, IL xp =, -1Pa(T nT)2 - b- (-) - Pr2

- 2- (s - flI (35)
T2 L a\T b TN

For each n and r, the contours of constant ambiguity are ellipses. Centers of
ellipses are spaced at intervals of T in r and l1T in in, and the overall ambiguity de-
creases exponentially in r and s.

A sketch of this ambiguity function is given in Fig. 19 on page 122 of Ref. 1.

Single Gaussian Pulse with Linear Frequency Modulation

If v( t) = ( t) exp (i bt 2) for any u(t), the "instantaneous frequency" is

fi - - (bt
2 ) = bt/77

2w dt

Thus, ft varies linearly with time. The GACF is

X~(r,,i) -v f v(t) vI1 (t-r) exp(-2n int) cdt

= exp (- ir 2) ut) u4 (t - r) ex [-2ni (f- r/7T) tJdt

exp (ibr 2 ) yt(T,i- bT1/7T)

Hence,

From Eq. (36) we see that

That is, the ambiguity along a line in - bPr-/, whose slope is equal to the rate of change
of the instantaneous frequency, is equal to the ambiguity along the r axis in the absence
of frequency modulation.

For the single Gaussian pulse with linear FM, we have from Eqs. (27) and (36)

EXVr(in T3 =exp [-aT2 - 7 D - br)2]

Curves of constant ambiguity are again ellipses,

(at k_) T2 - 2 rP Tin + @2 xv constant . (37)
a a a

The eccentricity of these constant ambiguity ellipses depends on both a and b, and
their axes are rotated with respect to the -, in axes by an angle a, where

t an 20 - 2n5/l [7 2 - ( a 2 + 1 9); (38)

as is shown in Appendix D.

0 M
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Note that in this case

IRQT)i
2

1_K(O)J
2= _r, [- (a ± exp(-2 2 i 2 /a)

The Ideal Ambiguity Function and its Approximation

We saw in Eq. (27) and in Fig. I that the parameter a suffices to reduce the ambi-
guity in either the i direction or the {D direction but not in both. Equation (37) shows that
with two parameters it is possible to reduce the ambiguity both along the n axis and the
in axis but not simultaneously along a line (i x -r tan d. One would surmise that with ad-
ditional parameters we might do better. Ideally, we would like the ambiguity function to
be a delta function at the origin, but this we cannot achieve. We might hope to obtain as
an approximation a narrow spike in both directions as shown in Fig. 3.

Fig. 3 - Approximation to
ideal ambiguity function

T

Equation (35) and Woodward's Fig. 19 show that with a train of pulses we can reduce
the ambiguity in all directions in the vicinity of the origin to an arbitrarily low level.
We do this, however, at the expense of having additional peaks appear elsewhere. This
is a consequence of Theorem 2; if we reduce the ambiguity in one place it must pop up
elsewhere so that the total area of the ambiguity surface remains constant.

The closest to the ideal ambiguity function we can expect is the so-called "thumb-
tack"! ambiguity function. This consists of a narrow spike surrounded by a uniformly low
pedestal, with most of the volume lying under the pedestal. We do not know of any wave-
form which produces the "thumbtack" ambiguity function. For many applications, an
ambiguity free region near the origin, as obtainable with a train of pulses, is sufficient.

Pseudo-Random Sequences

We recall that the ambiguity function along the -- axis is the square of the autocor-
relation function of the signal (see Eq. (13)). Thus, to approximate the "thumbtack" am-
biguity function, a necessary but not sufficient condition is that the autocorrelationfunction

13
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of the signal be small near the origin. One practical signal known to have such an auto-
correlation function is the signal generated by maximum length pseudo-random sequences.
Such a sequence, (at), may be specified by its recursion formula

a, z= c a1 > 2 , 2 . , (S39
ji1

where Cj = or i and E indicates modulo 2 summation and by the initial conditions given
by the values of

A new sequence formed by the modulo 2 addition of a maximal-length pseudo-random
sequence and a nontrivial shift of itself will be a shifted version of the original sequence.
That is, if

bjxv a, 3 a T47 where T 0 (mod 2- 1)

- Li Uj} c~a,'T-]
j=i -

then

bi = c.(a,-® &T aj)
i 'C

- =

Thus, fbt } obeys the same recursion relation as fa}. Since {aj} contains all
n-tuples (except the all zero n-tuple), these sequences are idential to within a phase
shift.

This so-called "shift-and-add" property can be used to obtain the narrowband amni-
guity function of signals generated by such sequences for time differences of -- k tI,
where k is an integer and t,0 is the shifting period of the generator.

The additive group of integers modulo 2 is isomorphic to the group consisting of - I
and I with multiplication as the group operation. if we let a (t) represent a signal ob-
tained from a pseudo-random sequence of -l's and I's, the "shift-and-add` property
becomes a "shift-and-multiply" property, as shown in Appendix E,

s(t) s(t-kto) x-=s(t-k't),

where k and k' are integers. Thus from Eq. (11)

14
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X(kto0 I ) -f s(t)s (t-kto) exp(-2TTiPt) dt

= r S( t k' to)xp (2,Ti(t) dt

exp (-27lik' $to) S (QI)

Therefore,

IX(kto,()I 2 = !S(n) 12

That is, for r- k to, the narrowband ambiguity function of maximal-length pseudo-
random signals is proportional to the power spectrum and is independent of k.

GENERALIZATIONS OF NARROWBAND AMBIGUITY FUNCTIONS

Cross-Ambiguity Function

An extension of the concept of ambiguity functions to two waveforms was defined by
Stutt (7).

Let o,( t) and u2 ( t) be two complex waveforms. We define the generalized cross-
correlation function as

X1 2(Ti) - U1 t) 2 t - r) exp (- 277it) dt (40)

- U2*( f) U( f + ±0 }exp ( 2nifs-) df , (41)

and the cross-ambiguity function as

A (-rD) IV (-, )12 (42)
12I) 12 r n3

These functions may be useful when it is desired to identify one of many possible wave-
forms. Some, but not all, of the properties of the autoambiguity function apply to the
cross-ambiguity function. For example, by Parseval's theorem we have

J' X, 1 2 (T, F) g
2

dn = I u( t) U* ( t 1r)2 d t

so that

rf IX 1 2 (-,,n)x
2
c dnd-r = f I U 1 ( t)j

2
f 1u 2 ( t -fl)1

2
drdt = I

if the energy in both waveforms is normalized to unity. Furthermore,

X 12 (' sx) f. u3(t) U2 (t - T) d t

X12 (0,i) = f U1*(f)U (f +- )) df 

15



D. A. SWICK

but

Ix,2 (o}Q)I CT ~ U1 (t) ul(t) dt 2

< S fut(t)[ 2 dt F tu,(t) 2 dt -

by the Cauchy-Schwarz inequality.

Therefore, if t~(t) k t2(t>, where k isa constant,

IY ,0 o)I2 < S(43)

in contrast with Eq. (15). Also,

k 2(T' j =f U1 ( t) n*~t -- T) exp( 2niD t}) dt 2

C JI( t ) [2 d t f I t4( tTr) exp (-27iit) [ 2 dt = (44)
2~~~~V

It does not follow from this relationship that [M1 2(T-,n; S tdo,(T.0)12

In fact, if xv( ) -' u 2( t -T 0 exp (2ri[Pt), TI, f: 0, then equality holds in Eq. (44):
4X2( ,) CT = If, in addition,

U2(t- T) exp(2 2iint) 2(t)

then from Eq. (43),

< 

so that in this case x12(oo) C X12(Tc %)I 2 Inthis case,

EX,2(0,0)x = u 2 t - r)exp(27nBDt)uj*(t) d t 4t (s '0) fZ2

By proof similar to that for Theorem 4 it can be shown that the generalization be-
comes

X,2(T,$) 
2 exp j(-2nii ( fr- t- Jdrd4t II= 1(tf)v2 2 (tf (45)

In place of the symmetry relation, Eq. (20), we have

x 12(-'r, -D) = f u( t) u4( t + r) exp (2iFbtt) dt

x exp(-2niinr) f u1(t- r) u*/t) exp(27nint) idt

= exp (-27niin) x*1 (r.i} -

Hence,

(46)

16
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Convolution Theorems

Theorem 7

Let u,(t) = vI (t) * W1( t)I u2(t) = V2 (t) w2( t). Then

x1 1,,'\2 ('r ) x'v 2 (T7n>( xD Xw1 2 (

Xv 1'2 (T.) * ¾ v2 (mri) * (47)

The proof is similar to that of Theorem 5.

Similarly, if u1( t) = V1 (t) wt (t) and " 2(t) v v2 (t) iV2 t, then

X' tt2 (Thin) xv 1x2,( r) * '27
in

-Y V1 W2 ('r, in) > t 11 2 (T.q1) (48)

Invariance Relations for the Real and Imaginary Parts of Ambiguity
Functions of Analytic Waveforms (Ref. 7)

Let > 1 2 (Tr(i) =x C12 ('rqF) + i6 1 2( T,i) be the generalized cross-correlation function of
analytic waveforms u,( t) and u 2 (t). Then

rr <t2> in) dTdin =v ff 4d = 2(rf i) d-rdi 1/2 (49)

if ul(t) and U2 (t) are both normalized.

Proof

rf 1X 12 (rmIl)I 2 ducidi = 1

-f [( 2 (r in) + 62U2 (r,(i)] d-din -

Since

<12 = (l,2)(x 1 2 +x 2 ) 

ff Ci2 (r,$) d-rdi = (1/4) rr (X2 + 2 X|+ X12 ) did

1 1/2 + 22 2 ) ddrd .
But

17
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ff x1c 2(sr-1')Dd-rdD =fJ f U(f)Ut4(f+$>U2 (')U*(t. +tD)

x exp [-27ri(f+v)sr] dfdvdtdid

= ffU 2(f)Ul'fr* )U2(-faUIZ(-f+4}) dfdin=in,

since u2(t) is analytic, so that

U2 (f) 0 f < 0

and

U2 (-f) = 01 f > 0 -

Similarly,

2f f r, D i d >d dzD' = 0

so that

ff <U2(T in) dTrd4 = 1/2

hence,

f' <12(7'$) dTd$ = 1/2

Notice that the autoambiguity function is a special case of the cross-ambiguity func-
tion, so that in general the real and imaginary parts of the ambiguity function of analytic
signals contribute equally to the invariant volume under the ambiguity surface.

The Most General Ambiguity Function

Before considering other ambiguity functions, it is of interest to reformulate the
problem in complete generality. From this generalization we will rederive the previous
results and then define an angular ambiguity function. The generalization is used in the
companion report to obtain a wideband ambiguity function.

Let s1(t) and s2 (t) be functions, square integrable on (-men), representing signals
which we wish to resolve. Obviously, if s, and s2 are to be resolved at all, they must
differ in some respect. As in Eq. (1), we use a mean-square criterion to maximize their
difference. That is, we wish to maximize

d2 = f s1(t) - s2(t)12 dt

= f [s1 (t)j 2 dt - f ts 2 t)[2 dt - 2R f s 1(t)s(t) dctj (50O

Equivalently (as in Eq. 2), we can achieve maximum resolution by minimizing
fX55I21 or IX S2 12, where

18
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I S I2 22may be termed the "most general ambiguity function." It is too general to be
useful in itself; its only value lies in the fact that from it we can obtain less general but
more useful ambiguity functions. The argument and functional form of X,1 2 depend,
of course, on the characteristics of s5 and s2 that are, in fact, distinguishable.

1, If 51( t) - 1 ( t) (which may be the low-frequency part of a high-frequency wave-
form a (t) = u( t) exp (iwvt) but need not be so restricted) and if s2(t) U(t- r), a time-
shifted version of the same waveform, we have

XS2 = XU(T °) = f U ( t ) u*(t)dt x R~r)

the complex autocorrelation function, Eq. (5). In this case X5 I 2 2 = IR (fr) l 2, the range
ambiguity function.

2. If s8(t) =v u(t) and if s 2 (t) x Lz(t)exp(27iint), afrequency-shiftedversionof the
same waveform, we have

Xs1s2 =X_(0A) z f l(t) 12 exp(-2n7iit) dt = M(¢)

the frequency autocorrelation function, Eq. (8).

3. If s5( t) = u (t) and if s2 (t) = u (t - r) exp [2n7iin (t - r)], a time- and frequency-
shifted version of the same waveform, we have (neglecting exp (--2n7iO)s))

1 2 xs(D) -fu(t) u*(t-T) esp(-277iut) tdt

as in Eq. (11).

4. If 51 ( t) = u( t) and if s/ t) x U2( t - -r) exp [2nii ((t -- , a time- and frequency-
shifted version of a different waveform, we have

' S 2 = xU (TO)) = f u(t)u'2(t -- ) exp(-27it) dit

as in Eq. (40).

Angular Ambiguity Function

The distinguishing features between s, and S2 need not be temporal. By considera-
tion of spatial differences, Urkowitz et al. (13) define an angular ambiguity function.

We consider two plane waves from distant sources incident on a linear aperture.
Let x be the distance along the aperture from a reference point (Fig. 4) and let o1 and
02 be the angles between the directions of arrival of the wavefronts and the normal to
the aperture. Let s(t ) represent a signal transmitted with a propagation velocity c, as-
sumed constant. If the incident waves are echoes from stationary targets at the same
range, then

19
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Fig. 4 - Wavefront geometry

-1 (t) = SIt,x,0 1) =

S2 (t) = s 2 (t'X,0 2 ) C

Qt - I - x sin 61

s t - T - C )

and from Eq. (51)

'C 1 2( x,(Il 16 2 xv f s - r - x in ) S(i n -x sin 0d)

= / s ) s t + x (si 01 sin 2)j -

If V (sin 0- sin62 )/c, then x. S2(v) -_ r f(t) S*(t+xV) )dt = xR X(v)I where RS(') is
the complex autocorrelation function of the transmitted signal.

Urkowitz et al. define the angular ambiguity function J (v) as

(IV) xv I1 s) 2 R,(xv) dx 1 (52)

where f(x) is the "illumination function" of the aperture. A detailed discussionl of the
illumination function and its spatial Fourier transform, the "space pattern" of the aper-
ture, is beyond the scope of the present treatment.

If resolution in both azimuth and elevation is considered, a two-dimensional illmni-
nation function lr(xy) is required, and a two-dimensional angular ambiguity function is
defined. If I (x.y} v- T,(K) I2 (y), the two-dimensional angular ambiguity function be-
comes the product of the individual ambiguity functions.

L ithe targets are at different ranges and are moving with different radial components
of velocity, a four-dimensional ambiguity function in azimuth, elevation, range, and "rrange
rate" (Doppler shift) is required. For narrowband signals this four-dimensional ambi-
guity function is separable into the product of the range-Doppler ambiguity function antd
the azimuth-elevation ambiguity function. The same is true, in general, of a six-
dimensional formulation which includes angular velocity as well.

20
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If the illumination function is complex, Eq. (52) cannot account for the effect of tt
aperture phase function on angular resolution. To avoid this difficulty and to avoid de
pendence of resolution on the orientation of a receiving array, Procopio et al. (15) re]
Eq. (50) with the integrated squared difference criterion

62 -fff t'r01 2 t) S2 t6 02,4 2 )92 sin 6 dOdOdt

where

Sil(t'o' ED,) ff I(Xy) s1(txy ,O,)) dxdy

and

s2(t,62 's02) dff l(xy) s2(xy,6 2 't) dxdy

are the signals received by the entire array, and the angular orientation of the array i
yh the coordinates o, in. An angular ambiguity function may now be defined as

- z8fte) 0 2t) sin a cd/Oddt
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Appendix A

PROOFS OF THEOREMS 1 THROUGH 4

Theorem I

X (T, () -_f rt) u*( t - r) exp (- 2r7i(Dt) d t

- Jff U(v) U*(f) exp (2ni [vt - f ( t - -r) -int] } dvdfdt

= ff U(i,) U?* f) 6 [v - ( f + r)] exp (2-rifr) dvdf

= f U(f + D) U*(f) exp(2wifr) df,

using the well-known properties of the Dirac delta function a ( *).

Theorem 2

x(rA'P) = 5:e [t ( t ) [I*( t - r)] -

Hence,

,:--1
¾)t [X (7T. m ) = U ( t ) U*( t - T) ,

and by Parseval's theorem,

fIx (r,i)1 2din = f |U(t)r2 1u(tT- 12 dt -

Thus

Iff Ix( s,1)1 2 dq)d-r =f I u(tl2 f I'('r)2 dsrdt = I .

Theorem 3

Jx(Tn)j 2 = If u ( t) u*(t T) exp (-2nit) dtI 2

c f Iu(t)12 dt f lu(t -r)l2 dt - 1,

by the Cauchy-Schwarz inequality.

Theorem 4

~foe~ It x T.<>)1 ] =ff [ ,J cxp [-271 (fT-- 1t)] dcTrdi

25
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Stlj~f [XT¢ = ffay , (,) u*(q - ) exp (-27ricD7) u*(C) EI(C - TCt Ift ''

x eXp (2nfiDC)exp E-2nif(T-$t)] dqdldrd4Y

= ff v(5)?7 e-) (D-t) u(X - t - r) exp (-27rif-r dTqdr

= ff o(t3)uA(q- t)u*(&)u(t- tfexp [-2nif(nq -6)] d-qd4

= LX( t f) 1 2



Appendix B

GACF OF A SINGLE GAUSSIAN PULSE

U(t) = (2a/71)'' 4 esp (-at 2 ), a > 0

X(Tr,q) = (2a/77)"'2 1fexp [-at 2 - a(t-,r) 2 - 27Tit] cit

= (2a/n)11 2 exp (-a'r 2 /2) ftC{exp [-2a(t -r/2) 2 ]} - (Bi)

From Woodward (1), page 28, "pair 3," we have Ytf [exp (-nt)z - exp (-nHf2). This can
be shown as follows:

Y f [exp(-7rt)] = J exp(-7nt 2 - 2-rrift) dct
- X

= exp (_77f2) f exp E-7F(t + if)2. dt
-m

m+j f

exp (-7nf2 ) J
-w+ if

exp (-7t2) dt

exp (-7nf2 ) f exp (-7nt2 ) dt - exp (-7Tf2 ),

Then

Yc £exp(-2at2)P =

by Woodward's "Rule 8," and
Ytf {exp [-2a ( t -T/2) 2] } -

(7/2 a) 1/2 exp (_7T2 f2 /2a)

(n/2a) I "2 exp [-It 2 f2 /2a - 27riffr/2]

by "Rule 6." Applying this result to Eq. (BI) we have

x(r,(D) = exp(-a-r2/2-n7T 2 D2/2a - 7riinr) .
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Appendix C

GACF OF A TRAIN OF DELTA FUNCTIONS

w(t) a U b(t-nT)

Xw~r¢) =L , ,5( t-nT) 8 ( t- -r - T) exp (-2-rrit) dt

,j 1C(n - m) T- sr exp (-277inOT) U 8(-F -nT exp (-2iin'm&T)

Now consider the formal Fourier series expansion

F' .5(in-,IT) = U Cn exp(-2ni nT).

Then

1 '27

Z f 1(I- n/T) exp(2nim(DT) dtD = I
-/2r

= C, r 2T exp f-2n i (n- m ) iT) dr
-1' 2T

- C.,T m / T = C( 'T ,

so that C, x T, Vm. Hence,

U exp(-2n7msuT)s- r- Y ,
s m0

and

Xw(,r,4) T T-1 E 6(T- nT)S --m/T) ,
a', n
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Appendix D

ROTATION OF AXES OF THE AMBIGUITY DIAGRAM OF A SINGLE
GAUSSIAN PULSE WITH LINEAR FREQUENCY MODULATION

Equation (37) will be in the standard form for an ellipse if we define new axes, -r',
in' rotated by an angle a with respect to the a, 6 axes, where

=r o -r' - iP' sin 0

and

iD =x T' sin 6 + Vn cos 0 .

If this is substituted in Eq. (37), rewritten in the form Ai-2 + Brat + CO)2 = K, and if
the coefficient of 7-'iv' is required to vanish, we obtain tan 20 B/(A-C) from which
Eq. (38) follows.
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Appendix E

MULTIPLICATWE PROPERTY OF PSEUDO-RANDOM SIGNALS

Theorem

Let s,(t) represent a signal obtained from a maximal-length pseudo-random sequence
of - Is and Is, of infinite duration. Let k be an integer, k X 0 (mod p ), where p is the
period of the pseudo-random sequence, and let to be the shifting period of the generator
producing the signal. Then s(t) s(t - kto) = s(t- k' tC), where k' is aso an intege-r.

Proof

We may write

s(t) = E a t 1(t) I

where {ai} is the pseudo-random sequence, andt

(El)A 1(t) A
0 o (tw- s) te< t < ite

0 , o therVwis e

Then

s(t-kt0 ) - L a1Ai(t-kt0 ) = 2 ak(t) .
i .1

since

Art - kto) =
1 ,

Is0,

( a 1) t < tkta < ito I , (i+k-1)

otherwise , O 0 othe rwi se

KtD t < (i f k)t0

= A.+k(t) = Aj(t) , if j = i + k .

Thus

s(t) s(t-kte) = Z T cai._kAi(t) A(t) -
iJ

tThis notation is similar to that used on p. 1S of J. L. Lawson and G. E. Uhlenbeek, "'Threshold Sig-
nals t" New York:McGraw Hill, 1950. i am grateful to Dr. H. L. Saxton for calling my attention to it.
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alaj-k = ajai.(k.j+i ) = ai-k' I (E3)

where k' iL an integer by the "shift-and-multiply" property of pseudo-random sequences
of ls and - ls.t

Using Eq. (El), we have

{

1, [(o ris)to t < ito] n [(je-) to < t < jtel

O., otherwi se

Io,1

t0 [max (i, j) - 1] <t cto min (ij)

otherwise

If i C j, this product vanishes unless (j- i) to < t c ito; this means i - 1 < i S J,
which can only be satisfied for i= j. Similarly, if i > j, Ai(t) A1(t) = 0 unless
(i - 1) to < t < j t0, for which we get i - 1 < j t i, and again J = i.

Thus,wecanwrite Ai(t)Aj(t) = A/(t) 1ij andfrom Eqs. (E2) and (E3),

s (t) s (t-kto) = E E aitk I AJ( t) 8iJ
i )

= Ž aki-JAi(t)
i

- s(t-k'to)

Q.E.D.

tSee, for example, C. McCoy, Jr., "Power Spectrum Estimates of Sampled Pseudo-Random Sequences,"
NRL Report 6673, p. 68, Dec. 29, 1967; Thesis, The George Washington University, Feb. 22, 1968. -
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